Thursday, July 9, 2009

Comparison with other methods of power generation


Hydroelectricity eliminates the flue gas emissions from fossil fuel combustion, including pollutants such as sulfur dioxide, nitric oxide, carbon monoxide, dust, and mercury in the coal. Hydroelectricity also avoids the hazards of coal mining and the indirect health effects of coal emissions. Compared to nuclear power, hydroelectricity generates no nuclear waste, has none of the dangers associated with uranium mining, nor nuclear leaks. Unlike uranium, hydroelectricity is also a renewable energy source.

Compared to wind farms, hydroelectricity power plants have a more predictable load factor. If the project has a storage reservoir, it can be dispatched to generate power when needed. Hydroelectric plants can be easily regulated to follow variations in power demand.

Unlike fossil-fueled combustion turbines, construction of a hydroelectric plant requires a long lead-time for site studies, hydrological studies, and environmental impact assessment. Hydrological data up to 50 years or more is usually required to determine the best sites and operating regimes for a large hydroelectric plant. Unlike plants operated by fuel, such as fossil or nuclear energy, the number of sites that can be economically developed for hydroelectric production is limited; in many areas the most cost effective sites have already been exploited. New hydro sites tend to be far from population centers and require extensive transmission lines. Hydroelectric generation depends on rainfall in the watershed, and may be significantly reduced in years of low rainfall or snowmelt. Long-term energy yield may be affected by climate change. Utilities that primarily use hydroelectric power may spend additional capital to build extra capacity to ensure sufficient power is available in low water years.

In parts of Canada (the provinces of British Columbia, Manitoba, Ontario, Quebec, Newfoundland and Labrador) hydroelectricity is used so extensively that the word "hydro" is often used to refer to any electricity delivered by a power utility. The government-run power utilities in these provinces are called BC Hydro, Manitoba Hydro, Hydro One (formerly "Ontario Hydro"), Hydro-Québec and Newfoundland and Labrador Hydro respectively. Hydro-Québec is the world's largest hydroelectric generating company, with a total installed capacity (2007) of 35,647 MW, including 33,305 MW of hydroelectric generation.

Countries with the most hydro-electric capacity

The ranking of hydro-electric capacity is either by actual annual energy production or by installed capacity power rating. A hydro-electric plant rarely operates at its full power rating over a full year; the ratio between annual average power and installed capacity rating is the capacity factor. The installed capacity is the sum of all generator nameplate power ratings. Sources came from BP Statistical Review - Full Report 2009 List of the largest hydoelectric power stations. Norway produces 98-99% of its electricity from hydroelectric.

Brazil, Canada, Norway and Venezuela are the only countries in the world where the majority of their internal electric energy production is from hydroelectric power.






Old hydro-electric power stations

Appleton, Wisconsin, USA completed 1882, A waterwheel on the Fox river supplied the first commercial hydroelectric power for lighting to two paper mills and a house, two years after Thomas Edison demonstrated incandescent lighting to the public. Within a matter of weeks of this installation, a power plant was also put into commercial service at Minneapolis.
Niagara Falls, New York. For many years the largest hydroelectric power station in the world. Operation began locally in 1895 and power was transmitted to Buffalo, New York, in 1896.
Decew Falls 1, St. Catharines, Ontario, Canada completed 25 August 1898. Owned by Ontario Power Generation. Four units are still operational. Recognized as an IEEE Milestone in Electrical Engineering & Computing by the IEEE Executive Committee in 2002.
Claverack Creek, in Stottville, New York, believed to be the oldest hydro power site in the United States. The turbine, a Morgan Smith, was constructed in 1869 and installed 2 years later. It is one of the earliest water wheel installations in the United States to generate electricity. It is owned today by Edison Hydro.[citation needed]
The oldest continuously-operated commercial hydroelectric plant in the United States is built on the Hudson River at Mechanicville, New York. The seven 750 kW units at this station initially supplied power at a frequency of 38 Hz, but later were increased in speed to 40 Hz. It went into commercial service July 22,1898. It is now being restored to its original condition and remains in commercial operation.
The oldest continuously-operated hydroelectric generator in Canada is located in St. Stephen, New Brunswick, Canada. Part of the construction of the Milltown Cotton Mill, this rope-driven generator originally powered the electric lights for the mill when it opened in 1882, and in 1888 started providing power to homes in the town. NB Power now owns and operates this as part of the Milltown Dam hydroelectric station.

Southern hemisphere

A small hydroelectric station, generating 650 kW, opened at Waratah, Tasmania, in 1885
Duck Reach, Launceston, Tasmania. Completed 1895. The first publicly owned hydro-electric plant in the Southern Hemisphere. Supplied power to the city of Launceston for street lighting.
Chivilingo was the first hydroelectric plant in Chile and the second in South America. With first power produced in 1897, it has two Pelton wheel turbines each turning a 215 kW generator. It was installed to provide power to mines and the city of Lota, Chile.
The Snowy Mountains Scheme has turbines all along the tunnel so it, in some perspectives it is also another hydroelectric station. However it only operates during peak hours of the day and mostly during the evening and early night. It supplies electricity to all over the state of NSW.

Cost

In the United States, a study is required before constructing a hydroelectric project. In 2008, a study could cost up to $50,000 for a 100 feet (30 m) run of a stream. Both federal and state licenses were required. A license typically cost between $150,000 and $1 million. A project earns money from the sale of energy, the sale of capacity, and the sale of renewable energy credits.

No comments:

Post a Comment